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We consider a dynamics model of lasing microcavities, a class of optical resolatdi@um in diametey
used in microlasers and for optical coupling of optical fibers. Inside such a cavity light circulates around the
perimeter and is trapped by internal reflection. This is known as “whispering gallery” or Qigiodes. The
cavity is a deformable cylindricalor spherical dielectric and at certain deformations light can escape by
refraction. The quality of the resonator Qrfactor, is defined aQ= w, wherer is the escape time and is
the frequency of light. We show that by appropriately deforming the cavityQtfector can be controlled by
prolonging or shortening the average length of time spent by light trajectories inside the cavity.

PACS numbds): 05.45.Gg, 05.45.Mt

I. INTRODUCTION In this paper we address the issue of controlling @e
factor of such cavities by controlling the residence time of

Laser resonators are components in lasers used to gendight inside the cavity. Spontaneous emission due to defor-
ate light with desired frequencies. Typically, the desiredmation is a major source of energy loss. Improved perfor-
quality of light is achieved by feeding back the light into the mance of the microresonator can be obtained by maintaining
laser using mirror arrangements. The same feedback effetight inside the cavity longer in order to increase fdac-
using mirrors can be achieved in a number of semiconductor. As pointed out in Ref[10] it is desirable to build de-
tors of spherical or cylindrical shape, by creating an internaformable cavities and use the deformation afdactor
reflection of the electromagnetic wave just inside the surfac@witch for dumping out stored light at will, the potential
of the dielectric cavity. A large difference between the indexapplication being in the coupling of optical fibeikd].
of refraction of the semiconductor and that of air ensures a Egor small deformations or when the microresonator is

long residence time of the light inside the cavity before itgmy 4 compared to the wavelength of the circulating light,

escapes due to refraction. This ensures the exceptionally highe process is modeled by the wave equafit#. For high
quality of the emitted light, for which these resonators ar€yeformations and when the cavity is large compare to the

known[1,2]. wavelength, ray-optics models have been propd4€qil3

The;e cavities are dielectric bodies. that have_ spherical QWhich we use in this paper to illustrate our control methods.
cylindrical symmetry and the waves circulating inside these The ray-optics model introduced fa0] is a Hamiltonian

microcavities are called “morphology-dependent reso- d . .
nances.” Another name used for these modes is “whisperin ap, the iterates of which represent the consecutive bounces
f a light ray against the cavity. This map obeys the

gallery” modes, the name first used by Lord Raleigh when”" , ;
explaining the efficient propagation of soufelen of whis-  KoI'mogorov-Amol'd-Moser (KAM) theorem of classical
pers along the walls of St. Paul's cathedral. The quality of mechanics: as the deformation grows the dynamics becomes

such a resonato® is defined byQ=wr, wherew is the increasingly chgotip fqllowing a KAM type_of scenaffib4].
mode frequency and its lifetime inside the cavity. The ray dynamics inside the cavity is equivalent to the non-
The study of optical microresonators is under way in alinear dynamics of a point mass undergoing reflections from
wide variety of condensed matter systems, such as semicote walls of a two-dimensional “billiard,” a problem that
ductor microlaser§l]. Due to the exceptionally higl fac-  has been extensively studied in mechar(its]. Different
tor, these devices have the potential for the reduction of thdeformations of the boundary generate very different types
lasing threshold required for large scale photonic integratiorof orbits. In the mechanics setting the focus is on quantum
[3,4]. Ideally only one mode or just a few modes of the mechanics and ergodic theory issyd$§]. The trajectories
optical field are isolated in such a cavity. HiGh-modes inside the cavity become chaotic at high deformations which
have been studied in optical fibelS], liquid droplets[6],  correspond to large angles of incidence of the rays at the
and glass sphergg] for the purpose of understanding non- boundary. For small values of the angle of incidence the rays
linear optical effects and to investigate the interaction of atget reflected back into the cavity, while for angles above a
oms with single cavity modeE8]. In Fig. 1 we reproduce certain critical value escape occurs by refraction according to
from Ref.[9] the images of real lasing microdisks used in Snell’'s law.
real experiments, which were obtained with a scanning elec- In real devices the deformation of the cavity occurs due to
tron microscope. These devices are undgmdin diameter. inertial forces, trapping electric fields or laser-induced elec-
In [9] it is shown that these devices can be reliably fabricatedrostriction[10], and spoiling of theQ factor is observed. In
and have the potential for low-power operation, a require-an ideally lossless cavity th@ factor can be also spoiled by
ment for efficient functioning of these devices when coupledevanescent leakadtinneling [10]. Using a ray-optics point
in microphotonic circuits and arrays. of view [17], escape occurs when the angle of incidence of a
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FIG. 2. Shadow graphs and simultaneous total-intensity images
of three lasing droplets falling in air taken at different phases of
oscillation.

with a different refraction index leads to delaying emission.

Il. THE RAY MODEL AND ITS DYNAMICS

To motivate the control results and get a better intuition of
the phenomenon we address, we refer to an experiment done
: with lasing liquid dropletd2]. In Fig. 2, reproduced from

1 pam [2], we show three ethanol droplets falling in air. These

SR droplets contain a lasing dye and emit ligil]. In one
column we see shadow graph images of the falling droplet.
Next to it we see the corresponding total-intensity images of
"the emission patterns. The droplets take different shapes as
they are falling and the emission pattern varies according to
the shape of the droplet. The deformation thus determines
the dynamics inside the cavity.
ray at the boundary reaches a critical value given by Snell's  Ajthough the microcavities can be spheres, disks, or cyl-
law. inders, in what follows we will describe a model for a two-

Related work on control can be found [it8], where the  dimensional lasing microcavitia disk [10]. The shape of
author shows how chaos in microcavities can be eliminate%e Cavity is described by a conformal transformation of the
in favor of regular behavior by coupling the field inside the ynit disk ([3]) which was first introduced if16],
cavity with another pump field. Methods for the control of
Hamiltonian systems such as the one[19] could not be z+bZ+cZ
used for our system, since they require close monitoring of w(z)= (1+2b%+3c?) 12’ ()
the dynamics inside the device, which in our case takes place '
with the speed of light. The method presented2] could  whereb andc are real parameters, aze-e'?, 0< p<27.
not be used for our system, since that method requires modi- The dynamics is thus four dimensional in position-
fying the equations of state of the system. In our case thesmomentum space. To represent it one reduces it to a lower-
equations are implicit, being obtained from geometric con-dimensional map which defines the angle of incidenas a

{b)

Sy
t :

FIG. 1. Images of microdisks obtained with a scanning electro
microscopei(a) side view of a disk with a 3tm diameter(b) top
view of a disk 5um in diameter.

siderations. function of the arc length$ (a two-dimensional cut through
The paper is organized as follows: we present the ray four-dimensional phase spac€his map represents a Poin-
model and discuss its dynamics in Sec. Il. In Sec. Ill wecaresection of the original phase space. In Fig. 3 we show

show how to shorten or lengthen the residence time of lighthe coordinates used for the Poincasetion. We emphasise
inside the cavity by pulsing the deformation parameter: reguthat the angle of incidence in this paper is measured from the
lar, small amplitude pulses can be used to shorten the resiangent to the cavity towards the ray, which leads to figures
dence time. To lengthen it, we show that a few large ampli-of the dynamics reversed compared to the corresponding
tude pulses, applied as early as possible, can be used. Vdees in[10]. The figures of the dynamics in what follows
also show that designing the cavity out of layers of materialill be represented in terms of the angle of incidence at the
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FIG. 3. Definition of the coordinates for the Poincarection
used to analyze the ray dynamics inside a disk. 0.85

boundary versus the arc length. To represent a trajectory one
has to determine the successive values of the arc length ant
of the angle of incidence at each bounce. Having determined
(¢ ,sin(e,)) the next values(¢,. 1,Sin(e,.1)) are deter- 0.85) @ o e e . e e — — —
mined from geometric considerations, without an explicit

formula. In[21] it is shown that the correspondence which 0.50 L
associates the coordinates at tita bounce(¢,,sin(x,)) to 0.0 1.0 2.0 3.0 4.0 6.0 6.0
the coordinates at then(+ 1)th bounce ¢, 1,Sin(a;,+1)) de- (a) @

fines a nonlinear map. This map is defined implicitly from
geometric consideratiod5] and requires using a Newton
method for determining the arc lengéh), . ; from the previ-

ous iteration. The angle of incidence is determined easily as g
follows: HH

0.60F"** s *secccecccccasccascrssacanncs i

Any1= Ynr1— Pn—an, (2

where ¢, stands for the direction of the forward tangent at
the nth iterate. The practical construction of this map can be
found in detail in[15].

We study the dynamics of the phase space when severa
light rays are sent into the cavity at uniformly distributed
angles of incidence, as the deformation paranietsvaried,
while we holdc=0 fixed. Figures 4, 5, and 6 show the
phase space at different deformations. For the undeformed
cavity (b=0) the trajectories are periodic: appearing as a
series of points in the Poincarsurface of section(not
shown or tori (quasiperiodic orbitsappearing as continuous
dotted lines, as shown in Fig(a. A real quasiperiodic tra-
jectory, in this regime, is shown inside the ca\iBig. 4b)],
next to the Poincarsurface of section for several trajectories
[Fig. 4@]. (b)

To have escape, the angle of incidence has to satisfy
Snell’s law, FIG. 4. (a) The phase space for the Poincaettion when no
deformation is presentb0). (b) Typical quasiperiodic trajectory
atb=0 inside the cavity.

_ 1
sin(a)= = 3

tion of tori surrounding a periodic elliptic orbit is called an
wheren is the ratio of the refraction index of air over the island chain. In Fig. &) we see the island chains in the
refraction index of the dielectric. In what follows we will call Poincaresurface of section phase space, along with uninter-
the critical angle the angle of incidence for which E§)  rupted quasiperiodic trajectories which persisted under the
holds with an equality sign. deformation. In Fig. Bb) we show a trajectory, inside the

As the deformation increases, saylie-0.11 some tori disk, corresponding to an island chain with four islands.

get deformed whereas others break down giving rise to new As the deformation parameter is further increased the re-
motions on a tori as well as to an equal number of ellipticgion occupied by tori that break increases giving rise to more
and hyperbolic periodic orbits. This result follows from the and more islands chains and more and more hyperbolic or-
PoincareBirkhoff theorem[14]. Around the new elliptic or-  bits. The island chains themselves break down in the same
bits new tori form, nested around that orbit. The configura-way the original tori broke down giving rise to more elliptic
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FIG. 5. (@ The phase space for the Poincasection atb

and hyperbolic orbits. The hyperbolic orbits that appear ar
leading to the formation of chaos. The stable and unstabl
orbits emanating from a hyperbolic orbit form heteroclinic
intersectiong14]. One such heteroclinic intersection implies
an infinite number of theril4], which implies the presence
of horseshoe-type dynamics and hence chaod isreases
larger regions of phase space become occupied by chaos.
Fig. 6(a) we see the phase spacebat 0.15. We also show a
typical chaotic orbifFig. 6(b)] inside the cauvity.
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of the tori break down and a light ray can migrate in between
island chains towards regions of phase space corresponding
0 a higher angle of incidence, eventually reaching the criti-
cal value which satisfies Snell's law and escape occurs. The
trajectories that appear to be chaotic in this model are indeed
chaotic since we have found that the Lyapunov exponents for
these trajectories are positive, typical maximum values being
zl-}}r]ound 0.13 when calculated over 1000 iterates of the map.

Ill. CONTROL OF THE Q FACTOR

FIG. 6. (8 The phase space at a high deformatlwa 0.15,

=.0.11 showilng island chains and. deformed quasiperiodic trajectoéhowing chaos in the upper region, island chains and quasiperiodic
ries. (b) Trajectory atb=0.11, which corresponds in phase SPacerajectories(b) Chaotic trajectory inside the cavity.

to an island chain with four islands.

Without chaos the angle of incidence of rays inside the One defines the quality of the resonator(factor[10],
cavity remains bounded. When chaos starts to appear sona®Q= w7, wherer is the escape time anadlis the frequency
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of light. When injecting light inside the dielectric, within a 80.0
given angle of incidence,

a1<sin(a)<a,, 70.0

if the cavity is deformed, so that sufficient chaos is present
escape can occur. One would like to be able to control thi s 60.0
mean residence time of these rays inside the cavity. To ca 5 "
culate the mean residence time we observe the dynamic3
over a fixed number of iteration®ounces of the rays, say g 50.0
1000, then add up the escape time of each ray and divide k= )
the total number of trajectories. The rays which do not es:
cape during the observation are considered to have esca 40.0
time the length of the observation, that is 1000.

In this section we will show first how we can dump out
stored light at will by pulsing regularly the deformation pa- 30.0

rameter. Second, we will show how we can prolong the 5 :
mean escape time also using the deformation parameter. 0.010 0.020 0.030 0.040 0.050

the last numerical example we will show that if the cavity is .
made out of layers of different refraction indices, escape ca Amplitude

be prevented very effectively.
The control we propose is open loop control, and acts by

adjusting the deformation parameter. The cavity has bee . .

already deformed to a value at which chaos is present an E _
escape occurs. We want to influence the escape time, delay 3 -

or shorten it, by giving extra deformations to the cavity at 200.0 300.0 400.0
carefully chosen intervals of time. In practiggl] this could

be achieved, for example, by piezoelectric devices, acting o Escape Time

the cavity at prescribed intervals of time.
The first approach we consider for control is to deform the £, 7. (Color) Color map of the mean escape times when 20

cavity slightly, at regular intervals of time, rays were injected into the cavity and observed for 1000 iterations.
These rays initiate with an angle of incidence such that 0.7
b=Dby+ éb, 4 <sin(a)<0.8. The escape ratio of indices was set at 0.9. One point

. on this map represents the escape time for a fixed amplitude and
whereby corresponds to the deformation already present anflequency of the deformation pulse. The darker the color the longer
ob is a brief pulse given at regular time intervals. To quan-the escape time.
tify the amount of deformation, we define the eccentricity to
be quency by 5 before each control experiment. 5 means num-

ber of iterates of the map, i.e., the number of bounces of a

e=(r2 ,—ra)riz (5) light ray against the cavity. Each point on the map corre-

sponds to fixed values of the amplitude and of the frequency.
where r .« and r,;, are, respectively, the maximum and We ran this numerical experiment on a supercomputer due to
minimum radius of the cavity, measured from the center ofthe large number of times we need to solve a nonlinear equa-
mass. With this definition, &= 0.15 the eccentricity equals tion by the Newton method. Next we sample cross sections
0.47 and the extra amount of deformation we allow repre-of this color map, horizontally and vertically; that is, we fix
sents approximately 8% of the deformation already presenthe frequency and let the amplitude vary and then fix the
We found that by regularly pulsing the deformation param-amplitude and vary the frequency. In Fig. 8 we took slices of
eterb escape is provoked faster, i.e., the escape time is shorthe color map at frequencies equal to 30 iterates and 74 iter-
ened by at least one-third. We considered 30 rays launcheastes. What we see from these plots is that at fixed frequency
into the cavity over a range of angles, so that 0.Zsina  the larger the amplitude of the pulse the faster the escape
<0.8, atb=0.15 and observed the trajectories over 100Qtime. This trend is present at low as well as high frequencies.
iterations, as extra deformations are given with various amtn these plots the amplitude was varied &y~ 0.01. If we
plitudes and frequencies. We tried several amplitudes of theefine this step we would see the same trend but a more
pulse and several frequencies and the results are shown iimegular curve. So the escape time can be predicted within a
Fig. 7. This is a color map of the escape time: the coordi-good accuracy, the error in prediction being at most ten it-
nates on this map are the frequency of the pudsemension-  erations. In Fig. 9 we took a horizontal cut of the map in Fig.
lesg versus the amplitude of the pulse. The frequency is7. What we notice is that at low amplitudes, that is small
measured in the number of map iterations in between contrgiulses, says,=0.03 the escape time oscillates around the
pulses. The colors on the map stand for different escapsame value. The escape time is well below the escape time
times, from short escape times corresponding to light colorsvithout control (which is 750 iterations but stays roughly
to long escape times corresponding to dark colors. In thishe same. If we consider larger pulses, sy 0.045, we
figure, we increased the amplitud® by 0.01 and the fre- notice that the escape time decreases rapidly as we increase
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400.0 400.0

300.0

Escape Time
°
Escape Time

200.0 1 200.0

T ] i
0.020 0.040 80.0 60.0 40.0
(a) Amplitude (a) Frequency

400.0 1 400.0

300.0 - 300.0 -

Escape Time
Escape Time

200.0 200.0

0.020 0.040 80.0 60.0 400
(b) Amplitude (b) Frequency

~ FIG. 8. (a) Mean escape times when the frequency of the pulse £ g () Mean escape times when the amplitude of the pulse
is 74 iterations and the amphtude is varied in steps ofis 0.03; the frequency was varied with a stép=1. (b) Mean
Samp=0.01. (b) Mean escape times when the frequency of theggcane times when the amplitude of the pulse is 0.045.

pulse is 30 iterations.

We did not find any values of the amplitude and of the
the frequency of the pulse. As before the average escape tinfieequency of the pulse at which the escape time gets delayed.
can be predicted from these plots within an error of at mos8o this type of control cannot be used to prolong trajectories.
10 iterations. For control we can interfer only with external pulses, which

In the above numerical experiments the starting values oére difficult to connect with the dynamics inside the cavity,
the incidence angle 0<7sina<0.8 were purposefully cho- given the speed of the process—the speed of light. So it was
sen close to the escape value 0.9 in order to minimize the more difficult to find an open loop control method which
computer time. It also demonstrates the effectiveness of theould delay the escape time. The idea was that it would be
control. In addition, the number of maps was chosen larggood to recreate, by some external deformations, some of the
enough to illustrate the trends in control. Even so, the rungjuasiperiodic trajectories that are presenthatO, which ap-
take several minutes on a supercomputer due to the largeear in phase space as uninterrupted lines. These type of
number of Newton equations that have to be solved at eacinajectories do not allow escape of trajectories circulating at
iterate since the map is given implicitly. In a real device, thelower angles of incidence in phase space. We have found
method of control can be argued to be realistic only at smalthat this can be realized by giving a large amplitude pulse or
deformations when th@ factor is large. With a large enough just a few large amplitude pulses close to the beginning of
Q, sayQ=10°, the above method of control can be imple- the numerical experiment. These pulses should be applied so
mented electro-optically which requires a control time of thethatb decreases, i.e., the deformation is temporarily reduced.
order of nanosecondd.1]. An actual mechanical deforma- The size of these pulses is of the same order as the deforma-
tion would take much longer by several orders of magnitudetion. These pulses are more efficient, in terms of getting
Instead, the effect of a mechanical deformation can be relonger trajectories, the earlier they are applied in the numeri-
placed by locally lowering the refraction index electro- cal experiment. In Figs. 10 and 11 we illustrate this proce-
optically. An instantaneous local change in the refraction in-dure. In Fig. 10 we see the phase space without any control
dex would temporarily modify(lower the escape value when the mean escape time is 1759 iterations and the phase
which is equivalent to an instantaneous change in the defospace shows angles of incidence between 0.7 and 0.9. We
mation parameter. assume in this experiment that the escape angle is at 0.9. In
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sin(oa)
sinfa)

FIG. 10. (a) 20 trajectories ab=0.15 with a mean escape time of 1759 iterations when observed over 3000 iteration§he same

trajectories when two pulses of amplitude=0.05 were given at 60 iterations and at 90 iterations. This time the mean escape time was
increased to 2280 iterations, that is by 30%.

Fig. 10b) we show the phase space when we gave two largéons using the same initial phase space as before. The new
pulses, one after 60 iterations and one after 90 iterations. Thehase space looks very different than in the example before
trajectories were pushed towards much lower angles of incifFig. 10b)] and the mean escape time was prolonged by
dence so it will take much longer for trajectories to migrate8.8%. As before we see that more island chains appeared and
towards the escape angle. We notice that instead of two laythe trajectories spread over a larger range of angles of inci-
ers of islands we have five layers of islands present, whicldence. In adition some unbroken tori were created as ex-
limits the space through which trajectories can escape tgpected initially in this procedure. These two examples show
wards higher angles of incidence. The mean escape time walsat the escape time and the phase space obtained, will be
prolonged by 29.6%. In a second numerical experimentuite different according to how these pulses are given. Still,
shown in Fig. 11 we gave a single large pulse after 90 iteraence the number and the timing of the pulses is fixed, the

0.80

0.85 . ‘o

,
:
0.80F" 0 & 4" :

o
g
sin(a)

.0, . . ) 1.0 2.0 3.0 4.0 . .
" 0 ) 5.0 6.0

FIG. 11. The same number of trajectories as in Fig. 10 when a pulse of ampfitbuie®.1 was given after 90 iterations.
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dence before being refracted is, and after refraction
through the inner layer ig,,. What we need to show is that
a>ap, SO the incidence angle decreases by this procedure.
This is the same as proving th@,<pB,, since az+ B,

= ap+ Bp=11/2. From the triangl&/AC we get that

£ (CAB)=TI—(8.+ wc)+ £ (AVC). (6)

From the triangle/BD we get that

FIG. 12. (a) A chaotic trajectory escaping in 25 iteratiorgb)
The trajectory with the same initial conditions ag@ inside a disk
made of two layers, the refraction index of the outer layer is smaller
then the index of the inner layer.

£ (DBV)=I1—(643+ wq)— £(DVB). (7)
The two equalities above can be rewritten as follows:

. . - St w.+ £L(CAB)=11+ £ (AVC), 8
process is robust to errors in these parameters. Heuristically, ot @e ( ) ( ) ®

what this p_rocedure does is to re-establish for a very prigf Sq+ wy+ 2 (DBV)=T1— 2 (DVB). 9)
amount of time the undeformed shape. We notice that this is

enough to make some of the features of the dynamics atomparing the above equalities, we see that sifite
lower deformations reappear, namely islands chains and un- , (DvB)<II+ 2 (AVC) and 6.=584, we must have
broken tori which form barriers for escaping trajectories. £ (CAB)> 2 (DBV) which can be written as followss,

The above values of the escape time were chosen only far / (OBA)>pB,+ 2 (OAB). The angles 2 (OAB) and
the purpose of demonstration. In a real microdisk the escapg (OBA) being equal, we get tha,> A3, .
can happgn within picoseconds, ancj for the aboye method to This is a very effective way of prolonging trajectories
be realistic, control has to be appli¢electro-optically at  since any trajectory which hits the inner layer will be trapped
the same time when the light is injected in the cavity. SinCqnsjde indefinitely. Only trajectories that do not hit the inner
the control is designed to be open loop, it does not requirgayer soon enough will escape. These are trajectories that are
feedback knowledge, which increases its probability of suciea|ly close to the escape limit initially. By reducing the size
cess. o _ of the inner layer, more trajectories are likely to escape

An alternate way to prolong the escape time is to desigRyhereas the ones trapped inside will stay there indefinitely.
the cavity out of layers Wlth a dlff_erent refractlon mdex._ln The idea of designing the cavity out of layers of different
Fig. 12a) we show a trajectory which at a high deformation refraction index can be used to make trajectories escape
b=0.15 escapes in only 25 iterations. If the core of the cavfaster, by taking the index of the outer layer larger then that
ity is made out of a material so that the ratio of the refractiongf the inner layer a trajectory. One can prove by Euclidean
indices between the core and the outer layer is say 0.6, Wgeometry that by doing so a trajectory will get reinjected at a
see that the same trajectory is trapped inside |ndef|n|tel}t]igher angle of incidence, where chaos is present according

[Fig. 12b)]. It can be proven by Euclidean geometry that if 5 the structure of the phase space.
the index of the outer layer is smaller than the index of the

inner layer, then the ray will be reinjected at a lower angle of

incidence which is less likely to be in the chaotic region. To V. CONCLUSIONS

see this let us look at Fig. 13. A single light ray is shown: We have addressed the problem of controlling the resi-
ACDB, which starts atA, gets refracted through the inner dence time of light inside dielectric microcavities, where es-
layer and hits the boundary again Bt The angle of inci- cape occurs when the cavity undergoes deformations from

FIG. 13. A single light ray crossing a two-layer microdisk. The incidence angleg aesnd «y, .
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the spherical or cylindrical shape. As explained by a ray4oop control, we are attempting to bound the regions of phase
optics model, the escape is linked to the presence of chaos apace by using geometric deformations of the boundary of
the deformation increases. We have presented open loape disk. The control perturbations in effect change the struc-
control procedures for shortening or prolonging the meanure of the phase space by increasing the size and number of
escape time of light inside the cavity. One approach was tgsjand chains. Such an increase forces the chaotic dynamics

apply extra deformations to the cavity periodically, and weto “slow” its growth towards escape. This subject will be
have shown that small regular deformations will lead topyrsued in a future paper.

dumping out stored light with predictable escape time. This
method has the potential for being applied in real situations
at low deformation, where control could be implemented
electro-optically{ 11]. Few pulses in the deformations param-
eter but large in amplitude can be used to extend the mean The authors gratefully acknowledge Dr. Brent E. Little for
residence time. An alternative but efficient way to keep lightuseful discussions that led to this work. We also acknowl-
inside is to design the cavity out of layers with different edge the support of the Office of Naval Research for con-
refraction indices of refractiofil1]. ducting this research. The numerical computations were

Finally, we remark that, in general, closed loop controldone under the DOD High Performance Computing Project
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