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Quality factor control in a lasing microcavity model

Ioana Triandaf and Ira B. Schwartz
Special Project in Nonlinear Science, U.S. Naval Research Laboratory, Code 6700.3, Plasma Physics Division,

Washington, D.C. 20375-5000
~Received 25 January 1999; revised manuscript received 5 December 1999!

We consider a dynamics model of lasing microcavities, a class of optical resonators~1–10mm in diameter!
used in microlasers and for optical coupling of optical fibers. Inside such a cavity light circulates around the
perimeter and is trapped by internal reflection. This is known as ‘‘whispering gallery’’ or high-Q modes. The
cavity is a deformable cylindrical~or spherical! dielectric and at certain deformations light can escape by
refraction. The quality of the resonator orQ factor, is defined asQ5vt, wheret is the escape time andv is
the frequency of light. We show that by appropriately deforming the cavity, theQ factor can be controlled by
prolonging or shortening the average length of time spent by light trajectories inside the cavity.

PACS number~s!: 05.45.Gg, 05.45.Mt
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I. INTRODUCTION

Laser resonators are components in lasers used to g
ate light with desired frequencies. Typically, the desir
quality of light is achieved by feeding back the light into th
laser using mirror arrangements. The same feedback e
using mirrors can be achieved in a number of semicond
tors of spherical or cylindrical shape, by creating an inter
reflection of the electromagnetic wave just inside the surf
of the dielectric cavity. A large difference between the ind
of refraction of the semiconductor and that of air ensure
long residence time of the light inside the cavity before
escapes due to refraction. This ensures the exceptionally
quality of the emitted light, for which these resonators a
known @1,2#.

These cavities are dielectric bodies that have spherica
cylindrical symmetry and the waves circulating inside the
microcavities are called ‘‘morphology-dependent res
nances.’’ Another name used for these modes is ‘‘whisper
gallery’’ modes, the name first used by Lord Raleigh wh
explaining the efficient propagation of sound~even of whis-
pers! along the walls of St. Paul’s cathedral. The quality
such a resonatorQ is defined byQ5vt, where v is the
mode frequency andt its lifetime inside the cavity.

The study of optical microresonators is under way in
wide variety of condensed matter systems, such as semi
ductor microlasers@1#. Due to the exceptionally highQ fac-
tor, these devices have the potential for the reduction of
lasing threshold required for large scale photonic integra
@3,4#. Ideally only one mode or just a few modes of th
optical field are isolated in such a cavity. High-Q modes
have been studied in optical fibers@5#, liquid droplets@6#,
and glass spheres@7# for the purpose of understanding no
linear optical effects and to investigate the interaction of
oms with single cavity modes@8#. In Fig. 1 we reproduce
from Ref. @9# the images of real lasing microdisks used
real experiments, which were obtained with a scanning e
tron microscope. These devices are under 5mm in diameter.
In @9# it is shown that these devices can be reliably fabrica
and have the potential for low-power operation, a requ
ment for efficient functioning of these devices when coup
in microphotonic circuits and arrays.
PRE 611063-651X/2000/61~4!/3601~9!/$15.00
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In this paper we address the issue of controlling theQ
factor of such cavities by controlling the residence time
light inside the cavity. Spontaneous emission due to de
mation is a major source of energy loss. Improved perf
mance of the microresonator can be obtained by maintain
light inside the cavity longer in order to increase theQ fac-
tor. As pointed out in Ref.@10# it is desirable to build de-
formable cavities and use the deformation as aQ-factor
switch for dumping out stored light at will, the potentia
application being in the coupling of optical fibers@11#.

For small deformations or when the microresonator
small compared to the wavelength of the circulating lig
the process is modeled by the wave equation@12#. For high
deformations and when the cavity is large compare to
wavelength, ray-optics models have been proposed@10,13#
which we use in this paper to illustrate our control metho

The ray-optics model introduced in@10# is a Hamiltonian
map, the iterates of which represent the consecutive bou
of a light ray against the cavity. This map obeys t
Kol’mogorov-Arnol’d-Moser ~KAM ! theorem of classica
mechanics: as the deformation grows the dynamics beco
increasingly chaotic following a KAM type of scenario@14#.
The ray dynamics inside the cavity is equivalent to the n
linear dynamics of a point mass undergoing reflections fr
the walls of a two-dimensional ‘‘billiard,’’ a problem tha
has been extensively studied in mechanics@15#. Different
deformations of the boundary generate very different ty
of orbits. In the mechanics setting the focus is on quant
mechanics and ergodic theory issues@16#. The trajectories
inside the cavity become chaotic at high deformations wh
correspond to large angles of incidence of the rays at
boundary. For small values of the angle of incidence the r
get reflected back into the cavity, while for angles above
certain critical value escape occurs by refraction accordin
Snell’s law.

In real devices the deformation of the cavity occurs due
inertial forces, trapping electric fields or laser-induced el
trostriction@10#, and spoiling of theQ factor is observed. In
an ideally lossless cavity theQ factor can be also spoiled b
evanescent leakage~tunneling! @10#. Using a ray-optics point
of view @17#, escape occurs when the angle of incidence o
3601 © 2000 The American Physical Society
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3602 PRE 61IOANA TRIANDAF AND IRA B. SCHWARTZ
ray at the boundary reaches a critical value given by Sne
law.

Related work on control can be found in@18#, where the
author shows how chaos in microcavities can be elimina
in favor of regular behavior by coupling the field inside t
cavity with another pump field. Methods for the control
Hamiltonian systems such as the one in@19# could not be
used for our system, since they require close monitoring
the dynamics inside the device, which in our case takes p
with the speed of light. The method presented in@20# could
not be used for our system, since that method requires m
fying the equations of state of the system. In our case th
equations are implicit, being obtained from geometric co
siderations.

The paper is organized as follows: we present the
model and discuss its dynamics in Sec. II. In Sec. III
show how to shorten or lengthen the residence time of li
inside the cavity by pulsing the deformation parameter: re
lar, small amplitude pulses can be used to shorten the
dence time. To lengthen it, we show that a few large am
tude pulses, applied as early as possible, can be used
also show that designing the cavity out of layers of mate

FIG. 1. Images of microdisks obtained with a scanning elect
microscope:~a! side view of a disk with a 3-mm diameter,~b! top
view of a disk 5mm in diameter.
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with a different refraction index leads to delaying emissio

II. THE RAY MODEL AND ITS DYNAMICS

To motivate the control results and get a better intuition
the phenomenon we address, we refer to an experiment d
with lasing liquid droplets@2#. In Fig. 2, reproduced from
@2#, we show three ethanol droplets falling in air. The
droplets contain a lasing dye and emit light@21#. In one
column we see shadow graph images of the falling drop
Next to it we see the corresponding total-intensity images
the emission patterns. The droplets take different shape
they are falling and the emission pattern varies according
the shape of the droplet. The deformation thus determi
the dynamics inside the cavity.

Although the microcavities can be spheres, disks, or c
inders, in what follows we will describe a model for a two
dimensional lasing microcavity~a disk! @10#. The shape of
the cavity is described by a conformal transformation of
unit disk ~@3#! which was first introduced in@16#,

w~z!5
z1bz21cz3

~112b213c2!1/2 , ~1!

whereb andc are real parameters, andz5eif, 0<f,2p.
The dynamics is thus four dimensional in positio

momentum space. To represent it one reduces it to a low
dimensional map which defines the angle of incidencea as a
function of the arc lengthf ~a two-dimensional cut through
a four-dimensional phase space!. This map represents a Poin
carésection of the original phase space. In Fig. 3 we sh
the coordinates used for the Poincare´ section. We emphasis
that the angle of incidence in this paper is measured from
tangent to the cavity towards the ray, which leads to figu
of the dynamics reversed compared to the correspond
ones in@10#. The figures of the dynamics in what follow
will be represented in terms of the angle of incidence at

n

FIG. 2. Shadow graphs and simultaneous total-intensity ima
of three lasing droplets falling in air taken at different phases
oscillation.
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PRE 61 3603QUALITY FACTOR CONTROL IN A LASING . . .
boundary versus the arc length. To represent a trajectory
has to determine the successive values of the arc length
of the angle of incidence at each bounce. Having determi
„fn ,sin(an)… the next values„fn11 ,sin(an11)… are deter-
mined from geometric considerations, without an expli
formula. In @21# it is shown that the correspondence whi
associates the coordinates at thenth bounce„fn ,sin(an)… to
the coordinates at the (n11)th bounce„fn11 ,sin(an11)… de-
fines a nonlinear map. This map is defined implicitly fro
geometric considerations@15# and requires using a Newto
method for determining the arc lengthfN11 from the previ-
ous iteration. The angle of incidence is determined easily
follows:

an115cn112cn2an , ~2!

wherecn stands for the direction of the forward tangent
thenth iterate. The practical construction of this map can
found in detail in@15#.

We study the dynamics of the phase space when sev
light rays are sent into the cavity at uniformly distribute
angles of incidence, as the deformation parameterb is varied,
while we hold c50 fixed. Figures 4, 5, and 6 show th
phase space at different deformations. For the undefor
cavity (b50) the trajectories are periodic: appearing as
series of points in the Poincare´ surface of section~not
shown! or tori ~quasiperiodic orbits! appearing as continuou
dotted lines, as shown in Fig. 4~a!. A real quasiperiodic tra-
jectory, in this regime, is shown inside the cavity@Fig. 4~b!#,
next to the Poincare´ surface of section for several trajectori
@Fig. 4~a!#.

To have escape, the angle of incidence has to sa
Snell’s law,

sin~a!>
1

n
, ~3!

wheren is the ratio of the refraction index of air over th
refraction index of the dielectric. In what follows we will ca
the critical angle the angle of incidence for which Eq.~3!
holds with an equality sign.

As the deformation increases, say tob50.11 some tori
get deformed whereas others break down giving rise to n
motions on a tori as well as to an equal number of ellip
and hyperbolic periodic orbits. This result follows from th
Poincare´-Birkhoff theorem@14#. Around the new elliptic or-
bits new tori form, nested around that orbit. The configu

FIG. 3. Definition of the coordinates for the Poincare´ section
used to analyze the ray dynamics inside a disk.
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tion of tori surrounding a periodic elliptic orbit is called a
island chain. In Fig. 5~a! we see the island chains in th
Poincare´ surface of section phase space, along with unin
rupted quasiperiodic trajectories which persisted under
deformation. In Fig. 5~b! we show a trajectory, inside th
disk, corresponding to an island chain with four islands.

As the deformation parameter is further increased the
gion occupied by tori that break increases giving rise to m
and more islands chains and more and more hyperbolic
bits. The island chains themselves break down in the sa
way the original tori broke down giving rise to more ellipt

FIG. 4. ~a! The phase space for the Poincare´ section when no
deformation is present (b50). ~b! Typical quasiperiodic trajectory
at b50 inside the cavity.
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3604 PRE 61IOANA TRIANDAF AND IRA B. SCHWARTZ
and hyperbolic orbits. The hyperbolic orbits that appear
leading to the formation of chaos. The stable and unsta
orbits emanating from a hyperbolic orbit form heteroclin
intersections@14#. One such heteroclinic intersection implie
an infinite number of them@14#, which implies the presenc
of horseshoe-type dynamics and hence chaos. Asb increases
larger regions of phase space become occupied by chao
Fig. 6~a! we see the phase space atb50.15. We also show a
typical chaotic orbit@Fig. 6~b!# inside the cavity.

Without chaos the angle of incidence of rays inside
cavity remains bounded. When chaos starts to appear s

FIG. 5. ~a! The phase space for the Poincare´ section atb
50.11 showing island chains and deformed quasiperiodic traje
ries. ~b! Trajectory atb50.11, which corresponds in phase spa
to an island chain with four islands.
e
le

. In
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of the tori break down and a light ray can migrate in betwe
island chains towards regions of phase space correspon
to a higher angle of incidence, eventually reaching the cr
cal value which satisfies Snell’s law and escape occurs.
trajectories that appear to be chaotic in this model are ind
chaotic since we have found that the Lyapunov exponents
these trajectories are positive, typical maximum values be
around 0.13 when calculated over 1000 iterates of the m

III. CONTROL OF THE Q FACTOR

One defines the quality of the resonator, orQ factor @10#,
asQ5vt, wheret is the escape time andv is the frequency

o-
FIG. 6. ~a! The phase space at a high deformationb50.15,

showing chaos in the upper region, island chains and quasiperi
trajectories.~b! Chaotic trajectory inside the cavity.



a

n
th
ca
m

e
es
ca

ut
a-
th
r.
is
ca

b
ee
a
la
a

o

th

an
n
to

d
o

s
re
en
m
o
h

0
m
th
n

rd

i
tr
ap
lo
th

um-
f a

re-
cy.
e to
ua-

ons
x
the
of

iter-
ncy
ape
ies.

ore
in a
it-

ig.
all
he
time

ease

20
ns.

0.7
oint
and
ger

PRE 61 3605QUALITY FACTOR CONTROL IN A LASING . . .
of light. When injecting light inside the dielectric, within
given angle of incidence,

a1,sin~a!,a2 ,

if the cavity is deformed, so that sufficient chaos is prese
escape can occur. One would like to be able to control
mean residence time of these rays inside the cavity. To
culate the mean residence time we observe the dyna
over a fixed number of iterations~bounces! of the rays, say
1000, then add up the escape time of each ray and divid
the total number of trajectories. The rays which do not
cape during the observation are considered to have es
time the length of the observation, that is 1000.

In this section we will show first how we can dump o
stored light at will by pulsing regularly the deformation p
rameter. Second, we will show how we can prolong
mean escape time also using the deformation paramete
the last numerical example we will show that if the cavity
made out of layers of different refraction indices, escape
be prevented very effectively.

The control we propose is open loop control, and acts
adjusting the deformation parameter. The cavity has b
already deformed to a value at which chaos is present
escape occurs. We want to influence the escape time, de
or shorten it, by giving extra deformations to the cavity
carefully chosen intervals of time. In practice@11# this could
be achieved, for example, by piezoelectric devices, acting
the cavity at prescribed intervals of time.

The first approach we consider for control is to deform
cavity slightly, at regular intervals of time,

b5b01db, ~4!

whereb0 corresponds to the deformation already present
db is a brief pulse given at regular time intervals. To qua
tify the amount of deformation, we define the eccentricity
be

e5~r max
2 2r min

2 !/r max
1/2 , ~5!

where r max and r min are, respectively, the maximum an
minimum radius of the cavity, measured from the center
mass. With this definition, atb50.15 the eccentricity equal
0.47 and the extra amount of deformation we allow rep
sents approximately 8% of the deformation already pres
We found that by regularly pulsing the deformation para
eterb escape is provoked faster, i.e., the escape time is sh
ened by at least one-third. We considered 30 rays launc
into the cavity over a range of angles,a, so that 0.7,sina
,0.8, at b50.15 and observed the trajectories over 10
iterations, as extra deformations are given with various a
plitudes and frequencies. We tried several amplitudes of
pulse and several frequencies and the results are show
Fig. 7. This is a color map of the escape time: the coo
nates on this map are the frequency of the pulse~dimension-
less! versus the amplitude of the pulse. The frequency
measured in the number of map iterations in between con
pulses. The colors on the map stand for different esc
times, from short escape times corresponding to light co
to long escape times corresponding to dark colors. In
figure, we increased the amplitudedb by 0.01 and the fre-
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quency by 5 before each control experiment. 5 means n
ber of iterates of the map, i.e., the number of bounces o
light ray against the cavity. Each point on the map cor
sponds to fixed values of the amplitude and of the frequen
We ran this numerical experiment on a supercomputer du
the large number of times we need to solve a nonlinear eq
tion by the Newton method. Next we sample cross secti
of this color map, horizontally and vertically; that is, we fi
the frequency and let the amplitude vary and then fix
amplitude and vary the frequency. In Fig. 8 we took slices
the color map at frequencies equal to 30 iterates and 74
ates. What we see from these plots is that at fixed freque
the larger the amplitude of the pulse the faster the esc
time. This trend is present at low as well as high frequenc
In these plots the amplitude was varied bydamp50.01. If we
refine this step we would see the same trend but a m
irregular curve. So the escape time can be predicted with
good accuracy, the error in prediction being at most ten
erations. In Fig. 9 we took a horizontal cut of the map in F
7. What we notice is that at low amplitudes, that is sm
pulses, saydb50.03 the escape time oscillates around t
same value. The escape time is well below the escape
without control ~which is 750 iterations!, but stays roughly
the same. If we consider larger pulses, saydb50.045, we
notice that the escape time decreases rapidly as we incr

FIG. 7. ~Color! Color map of the mean escape times when
rays were injected into the cavity and observed for 1000 iteratio
These rays initiate with an angle of incidence such that
,sin(a),0.8. The escape ratio of indices was set at 0.9. One p
on this map represents the escape time for a fixed amplitude
frequency of the deformation pulse. The darker the color the lon
the escape time.
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3606 PRE 61IOANA TRIANDAF AND IRA B. SCHWARTZ
the frequency of the pulse. As before the average escape
can be predicted from these plots within an error of at m
10 iterations.

In the above numerical experiments the starting value
the incidence angle 0.7,sina,0.8 were purposefully cho
sen close to the escape valuea50.9 in order to minimize the
computer time. It also demonstrates the effectiveness of
control. In addition, the number of maps was chosen la
enough to illustrate the trends in control. Even so, the r
take several minutes on a supercomputer due to the l
number of Newton equations that have to be solved at e
iterate since the map is given implicitly. In a real device, t
method of control can be argued to be realistic only at sm
deformations when theQ factor is large. With a large enoug
Q, sayQ*106, the above method of control can be impl
mented electro-optically which requires a control time of t
order of nanoseconds@11#. An actual mechanical deforma
tion would take much longer by several orders of magnitu
Instead, the effect of a mechanical deformation can be
placed by locally lowering the refraction index electr
optically. An instantaneous local change in the refraction
dex would temporarily modify~lower! the escape value
which is equivalent to an instantaneous change in the de
mation parameter.

FIG. 8. ~a! Mean escape times when the frequency of the pu
is 74 iterations and the amplitude is varied in steps
damp50.01. ~b! Mean escape times when the frequency of
pulse is 30 iterations.
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We did not find any values of the amplitude and of t
frequency of the pulse at which the escape time gets dela
So this type of control cannot be used to prolong trajector
For control we can interfer only with external pulses, whi
are difficult to connect with the dynamics inside the cavi
given the speed of the process—the speed of light. So it
more difficult to find an open loop control method whic
would delay the escape time. The idea was that it would
good to recreate, by some external deformations, some o
quasiperiodic trajectories that are present atb50, which ap-
pear in phase space as uninterrupted lines. These typ
trajectories do not allow escape of trajectories circulating
lower angles of incidence in phase space. We have fo
that this can be realized by giving a large amplitude pulse
just a few large amplitude pulses close to the beginning
the numerical experiment. These pulses should be applie
thatb decreases, i.e., the deformation is temporarily reduc
The size of these pulses is of the same order as the defo
tion. These pulses are more efficient, in terms of gett
longer trajectories, the earlier they are applied in the num
cal experiment. In Figs. 10 and 11 we illustrate this pro
dure. In Fig. 10 we see the phase space without any con
when the mean escape time is 1759 iterations and the p
space shows angles of incidence between 0.7 and 0.9.
assume in this experiment that the escape angle is at 0.

e
f

FIG. 9. ~a! Mean escape times when the amplitude of the pu
is 0.03; the frequency was varied with a stepdn51. ~b! Mean
escape times when the amplitude of the pulse is 0.045.
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FIG. 10. ~a! 20 trajectories atb50.15 with a mean escape time of 1759 iterations when observed over 3000 iterations.~b! The same
trajectories when two pulses of amplitudedb50.05 were given at 60 iterations and at 90 iterations. This time the mean escape tim
increased to 2280 iterations, that is by 30%.
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Fig. 10~b! we show the phase space when we gave two la
pulses, one after 60 iterations and one after 90 iterations.
trajectories were pushed towards much lower angles of i
dence so it will take much longer for trajectories to migra
towards the escape angle. We notice that instead of two
ers of islands we have five layers of islands present, wh
limits the space through which trajectories can escape
wards higher angles of incidence. The mean escape time
prolonged by 29.6%. In a second numerical experim
shown in Fig. 11 we gave a single large pulse after 90 ite
e
he
i-

y-
h
o-
as
t
-

tions using the same initial phase space as before. The
phase space looks very different than in the example be
@Fig. 10~b!# and the mean escape time was prolonged
8.8%. As before we see that more island chains appeared
the trajectories spread over a larger range of angles of i
dence. In adition some unbroken tori were created as
pected initially in this procedure. These two examples sh
that the escape time and the phase space obtained, wi
quite different according to how these pulses are given. S
once the number and the timing of the pulses is fixed,
FIG. 11. The same number of trajectories as in Fig. 10 when a pulse of amplitudedb50.1 was given after 90 iterations.
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3608 PRE 61IOANA TRIANDAF AND IRA B. SCHWARTZ
process is robust to errors in these parameters. Heuristic
what this procedure does is to re-establish for a very b
amount of time the undeformed shape. We notice that th
enough to make some of the features of the dynamic
lower deformations reappear, namely islands chains and
broken tori which form barriers for escaping trajectories.

The above values of the escape time were chosen only
the purpose of demonstration. In a real microdisk the esc
can happen within picoseconds, and for the above metho
be realistic, control has to be applied~electro-optically! at
the same time when the light is injected in the cavity. Sin
the control is designed to be open loop, it does not req
feedback knowledge, which increases its probability of s
cess.

An alternate way to prolong the escape time is to des
the cavity out of layers with a different refraction index.
Fig. 12~a! we show a trajectory which at a high deformatio
b50.15 escapes in only 25 iterations. If the core of the c
ity is made out of a material so that the ratio of the refract
indices between the core and the outer layer is say 0.6
see that the same trajectory is trapped inside indefini
@Fig. 12~b!#. It can be proven by Euclidean geometry that
the index of the outer layer is smaller than the index of
inner layer, then the ray will be reinjected at a lower angle
incidence which is less likely to be in the chaotic region.
see this let us look at Fig. 13. A single light ray is show
ACDB, which starts atA, gets refracted through the inne
layer and hits the boundary again atB. The angle of inci-

FIG. 12. ~a! A chaotic trajectory escaping in 25 iterations.~b!
The trajectory with the same initial conditions as in~a! inside a disk
made of two layers, the refraction index of the outer layer is sma
then the index of the inner layer.
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dence before being refracted isaa and after refraction
through the inner layer isab . What we need to show is tha
aa.ab , so the incidence angle decreases by this proced
This is the same as proving thatba,bb , since aa1ba
5ab1bb5P/2. From the triangleVAC we get that

/~CAB!5P2~dc1vc!1/~AVC!. ~6!

From the triangleVBD we get that

/~DBV!5P2~dd1vd!2/~DVB!. ~7!

The two equalities above can be rewritten as follows:

dc1vc1/~CAB!5P1/~AVC!, ~8!

dd1vd1/~DBV!5P2/~DVB!. ~9!

Comparing the above equalities, we see that sinceP
2/(DVB),P1/(AVC) and dc5dd , we must have
/(CAB)./(DBV) which can be written as follows:ba
1/(OBA).bb1/(OAB). The angles /(OAB) and
/(OBA) being equal, we get thatba.bb .

This is a very effective way of prolonging trajectorie
since any trajectory which hits the inner layer will be trapp
inside indefinitely. Only trajectories that do not hit the inn
layer soon enough will escape. These are trajectories tha
really close to the escape limit initially. By reducing the si
of the inner layer, more trajectories are likely to esca
whereas the ones trapped inside will stay there indefinit
The idea of designing the cavity out of layers of differe
refraction index can be used to make trajectories esc
faster, by taking the index of the outer layer larger then t
of the inner layer a trajectory. One can prove by Euclide
geometry that by doing so a trajectory will get reinjected a
higher angle of incidence, where chaos is present accor
to the structure of the phase space.

IV. CONCLUSIONS

We have addressed the problem of controlling the re
dence time of light inside dielectric microcavities, where e
cape occurs when the cavity undergoes deformations f

r

FIG. 13. A single light ray crossing a two-layer microdisk. The incidence angles areaa andab .
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PRE 61 3609QUALITY FACTOR CONTROL IN A LASING . . .
the spherical or cylindrical shape. As explained by a r
optics model, the escape is linked to the presence of chao
the deformation increases. We have presented open
control procedures for shortening or prolonging the me
escape time of light inside the cavity. One approach wa
apply extra deformations to the cavity periodically, and
have shown that small regular deformations will lead
dumping out stored light with predictable escape time. T
method has the potential for being applied in real situati
at low deformation, where control could be implement
electro-optically@11#. Few pulses in the deformations param
eter but large in amplitude can be used to extend the m
residence time. An alternative but efficient way to keep lig
inside is to design the cavity out of layers with differe
refraction indices of refraction@11#.

Finally, we remark that, in general, closed loop cont
@22# and open loop control used in dynamics stabilize pe
odic orbits knowna priori. However, in our case of ope
da
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i-

loop control, we are attempting to bound the regions of ph
space by using geometric deformations of the boundary
the disk. The control perturbations in effect change the str
ture of the phase space by increasing the size and numb
island chains. Such an increase forces the chaotic dyna
to ‘‘slow’’ its growth towards escape. This subject will b
pursued in a future paper.
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